If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2+43m-42=0
a = 7; b = 43; c = -42;
Δ = b2-4ac
Δ = 432-4·7·(-42)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-55}{2*7}=\frac{-98}{14} =-7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+55}{2*7}=\frac{12}{14} =6/7 $
| 5x-4=x-16 | | .005(7-k)+.01(k-8)=1 | | 36/4=y | | 3s+20=13s | | 3y-45=y-7 | | 5s=s+4 | | -2-12=4x+17-3x | | 1.7-y=17 | | v=2v-80 | | .003(9-k)+.02(k-8)=1 | | -2x+5+3x=-25+23 | | 0.2=y/4.3 | | p+74+4p-70=180 | | (6x)+5=12 | | -3+2=m-10 | | -2x^-5x+5=0 | | 15u-6=2u+7 | | x-1-2x=3 | | 14x-12=5x+6 | | 5+x÷(-8)=-2 | | 7-3x=-×+1 | | 15a+30=7a+38 | | 5=2/x | | 18+(2x)=40 | | 14p+98=5p+44 | | 7-(4x)=35 | | 7.2-1c=-2 | | 9m-19=3m+1m+10/3 | | n+3/5=5 | | 14x+4=9x+12 | | 14a-90=5a-18 | | (x)(2)+6=18 |